Z. Li, T. Wang, and N. Li (2022). Differentially Private Vertical Federated Clustering. arXiv preprint, arXiv:2208.01700.
M. Zhou, T. Wang, T.H. Hubert Chan, G. Fanti, and E. Shi (2022). Locally differentially private sparse vector aggregation. 2022 IEEE Symposium on Security and Privacy, pp. 422-439.
F. Cicala, W. Wang, T. Wang, N. Li, E. Bertino, F. Liang, and Y. Yang (2021). Pure: A framework for analyzing proximity-based contact tracing protocols. ACM Computing Surveys, (CSUR) 55, no. 1, 1-36.
T. Wang, J. Qiongna Chen, Z. Zhang, D. Su, Y. Cheng, Z. Li, N. Li, and S. Jha (2021). Continuous release of data streams under both centralized and local differential privacy. 2021 ACM SIGSAC Conference on Computer and Communications Security, pp. 1237-1253.
M. Chen, Z. Zhang, T. Wang, M. Backes, M. Humbert, and Y. Zhang (2021). When machine unlearning jeopardizes privacy. 2021 ACM SIGSAC Conference on Computer and Communications Security, pp. 896-911.
Z. Zhang, T. Wang, J. Honorio, N. Li, M. Backes, S. He, J. Chen, and Y. Zhang (2021). Privsyn: Differentially private data synthesis. arXiv:2012. 15128.
A. Xiong, T. Wang, N. Li, and S. Jha (2020). Towards effective differential privacy communication for users’ data sharing decision and comprehension. 2020 IEEE Symposium on Security and Privacy (SP), pp. 392-410.
T. Wang, B. Ding, M. Xu, Z. Huang, C. Hong, J. Zhou, N. Li, and S. Jha . Improving Utility and Security of the Shuffler-based Differential Privacy. Proceedings of the VLDB Endowment, Volume 13, Issue 13, pp. 3545-3558.
T. Wang, N. Li, and S. Jha (2018). Locally differentially private frequent itemset mining. 2018 IEEE Symposium on Security and Privacy (SP), pp. 127-143.
T. Wang, J. Blocki, N. Li, and S. Jha (2017). Locally differentially private protocols for frequency estimation. 26th USENIX Security Symposium (USENIX Security 17), pp. 729-745.